Estimation of Change Point in Poisson Random Variables Using the Maximum Likelihood Method
نویسندگان
چکیده
منابع مشابه
Step change point estimation in the multivariate-attribute process variability using artificial neural networks and maximum likelihood estimation
In some statistical process control applications, the combination of both variable and attribute quality characteristics which are correlated represents the quality of the product or the process. In such processes, identification the time of manifesting the out-of-control states can help the quality engineers to eliminate the assignable causes through proper corrective actions. In this paper, f...
متن کاملBayesian change point estimation in Poisson-based control charts
Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...
متن کاملChange Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering
In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...
متن کاملModified Maximum Likelihood Estimation in Poisson Regression
In Generalized Linear Models, likelihood equations are intractable and do not have explicit solutions; thus, they must be solved by using Newton-type algorithms. Solving these equations by iterations, however, can be problematic: the iterations might converge to wrong values or the iterations might not converge at all. In this study, we derive the modified maximum likelihood estimators for Pois...
متن کاملModified Maximum Likelihood Estimation in Poisson Regression
In Generalized Linear Models, likelihood equations are intractable and do not have explicit solutions; thus, they must be solved by using Newton-type algorithms. Solving these equations by iterations, however, can be problematic: the iterations might converge to wrong values or the iterations might not converge at all. In this study, we derive the modified maximum likelihood estimators for Pois...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Theoretical and Applied Statistics
سال: 2016
ISSN: 2326-8999
DOI: 10.11648/j.ajtas.20160504.18